Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Small Methods ; : e2400312, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654560

ABSTRACT

Gate-controlled ionic intercalation in the van der Waals gap of 2D layered materials can induce novel phases and unlock new properties. However, this strategy is often unsuitable for densely packed 2D non-layered materials. The non-layered rhombohedral Cr2S3 is an intrinsic heterodimensional superlattice with alternating layers of 2D CrS2 and 0D Cr1/3. Here an innovative chemical vapor deposition method is reported, utilizing strategically modified metal precursors to initiate entirely new seed layers, yields ultrathin inclined-standing grown 2D Cr2S3 nanosheets with edge instead of face contact with substrate surfaces, enabling rapid all-dry transfer to other substrates while ensuring high crystal quality. The unconventional ordered vacancy channels within the 0D Cr1/3 layers, as revealed by cross-sectional scanning transmission electron microscope, permitting the insertion of Li+ ions. An unprecedented metal-insulator transition, with a resistance modulation of up to six orders of magnitude at 300 K, is observed in Cr2S3-based ionic field-effect transistors. Theoretical calculations corroborate the metallization induced by Li-ion intercalation. This work sheds light on the understanding of growth mechanism, structure-property correlation and highlights the diverse potential applications of 2D non-layered Cr2S3 superlattice.

2.
J Cardiothorac Surg ; 19(1): 262, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654307

ABSTRACT

BACKGROUND: The relationship between venous congestion in cardiopulmonary bypass (CPB) and acute kidney injury (AKI) in cardiac surgery has not utterly substantiated. This study aimed at investigate the relationship between CVP in CPB and the occurrence of AKI. METHODS: We retrospectively reviewed 2048 consecutive patients with cardiovascular disease undergoing cardiac procedure with CPB from January 2018 to December 2022. We used the median CVP value obtained during CPB for our analysis and patients were grouped according to this parameter. The primary outcomes were AKI and renal replacement therapy(RRT). Multivariable logistic regression was used to explore the association between CVP and AKI. RESULTS: A total of 2048 patients were enrolled in our study and divided into high CVP group (CVP ≥ 6.5 mmHg) and low CVP group (CVP < 6.5 mmHg) according to the median CVP value. Patients in high CVP group had the high AKI and RRT rate when compared to the low CVPgroup[(367/912,40.24%)vs.(408/1136,35.92%),P = 0.045;(16/912,1.75%vs.9/1136;0.79%), P = 0.049]. Multivariate logistic regression analysis displayed CVP played an indispensable part in development of renal failure in surgical. CONCLUSIONS: Elevated CVP(≥ 6.5mmH2OmmHg) in CPB during cardiac operation is associated with an increased risk of AKI in cardiovascular surgery patients. Clinical attention should be paid to the potential role of CVP in predicting the occurrence of AKI.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Cardiopulmonary Bypass , Central Venous Pressure , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/physiopathology , Male , Female , Cardiopulmonary Bypass/adverse effects , Retrospective Studies , Central Venous Pressure/physiology , Middle Aged , Cardiac Surgical Procedures/adverse effects , Aged , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Risk Factors , Renal Replacement Therapy
3.
Sci Adv ; 8(1): eabi7894, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34985960

ABSTRACT

Photonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evidence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is programmable and can be implemented with low loss using few optical components. We show that particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. This work thus opens the path to demonstrating QCA with programmable photonic processors.

4.
Radiology ; 302(1): 200-211, 2022 01.
Article in English | MEDLINE | ID: mdl-34698568

ABSTRACT

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non-small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non-small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Deep Learning , Lung Neoplasms/pathology , Neoplasms, Second Primary/diagnosis , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cohort Studies , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Middle Aged , Neoplasm Staging , Predictive Value of Tests , Prognosis , Prospective Studies , Reproducibility of Results , Retrospective Studies , Risk Assessment/methods , Survival Analysis
5.
J Colloid Interface Sci ; 584: 875-884, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33268067

ABSTRACT

Potassium-ion batteries (KIBs) as a substitute for lithium ion batteries have attracted tremendous attention in recent years thanks to the cost-effectiveness and abundance of potassium resources. However, the current lack of suitable electrode materials is a major obstacle against the practical application of KIBs. Hence, design and preparation of capable anode materials are critical for the development of KIBs. In this study, a promising electrode based on N, P-codoped large diameter hollow carbon nanotubes decorated with ultrasmall MoP nanoparticles (MoP@NP-HCNTs) were prepared. The hollow carbon nanotubes facilitate the rapid electron and ion transfer, and release the huge volume expansion during discharge/charge. The MoP@NP-HCNT electrode delivers high initial capacity of 485, 482 and 463 mAh g-1 corresponding to 100, 200 and 1000 mA g-1, respectively. The discharge specific capacity still maintains 300 mAh g-1 at 100 mA g-1 after over 80 cycles. It still shows ultralong cycling stability with a discharge capacity of 255 mAh g-1 at a high current density of 1000 mA g-1 after 120 cycles. This study opens up a new routine to develop high reversible capacity and promising electrode materials for KIBs.

6.
Phys Rev Lett ; 124(10): 100502, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216428

ABSTRACT

As a promising candidate for exhibiting quantum computational supremacy, Gaussian boson sampling (GBS) is designed to exploit the ease of experimental preparation of Gaussian states. However, sufficiently large and inevitable experimental noise might render GBS classically simulable. In this work, we formalize this intuition by establishing a sufficient condition for approximate polynomial-time classical simulation of noisy GBS-in the form of an inequality between the input squeezing parameter, the overall transmission rate, and the quality of photon detectors. Our result serves as a nonclassicality test that must be passed by any quantum computational supremacy demonstration based on GBS. We show that, for most linear-optical architectures, where photon loss increases exponentially with the circuit depth, noisy GBS loses its quantum advantage in the asymptotic limit. Our results thus delineate intermediate-sized regimes where GBS devices might considerably outperform classical computers for modest noise levels. Finally, we find that increasing the amount of input squeezing is helpful to evade our classical simulation algorithm, which suggests a potential route to mitigate photon loss.

7.
Oxid Med Cell Longev ; 2020: 3602824, 2020.
Article in English | MEDLINE | ID: mdl-32064021

ABSTRACT

Abdominal aortic aneurysm (AAA) is a vascular disorder that is considered a chronic inflammatory disease. However, the precise molecular mechanisms involved in AAA have not been fully elucidated. Recently, significant progress has been made in understanding the function and mechanism of action of inhibitor of kappa B kinase epsilon (IKKε) in inflammatory and metabolic diseases. The angiotensin II- (Ang II-) induced or pharmacological inhibitors were established to test the effects of IKKε on AAA in vivo. After mice were continuously stimulated with Ang II for 28 days, morphologically, we found that knockout of IKKε reduced AAA formation and drastically reduced maximal diameter and severity. We also observed a decrease in elastin degradation and medial destruction, which were independent of systolic blood pressure or plasma cholesterol concentrations. Western blot analyses and immunohistochemical staining were carried out to measure IKKε expression in AAA tissues and cell lines. AAA phenotype of mice was measured by ultrasound and biochemical indexes. In zymography, immunohistology staining, immunofluorescence staining, and reactive oxygen species (ROS) analysis, TUNEL assay was used to examine the effects of IKKε on AAA progression in AAA mice. IKKε deficiency significantly inhibited inflammatory macrophage infiltration, matrix metalloproteinase (MMP) activity, ROS production, and vascular smooth muscle cell (VSMC) apoptosis. We used primary mouse aortic VSMC isolated from apolipoprotein E (Apoe) -/- and Apoe-/-IKKε -/- mice. Mechanistically, IKKε deficiency blunted the activation of the ERK1/2 pathway. The IKKε inhibitor, amlexanox, has the same impact in AAA. Our results demonstrate a critical role of IKKε in AAA formation induced by Ang II in Apoe-/- mice. Targeting IKKε may constitute a novel therapeutic strategy to prevent AAA progression.


Subject(s)
Angiotensin II/toxicity , Aortic Aneurysm, Abdominal/metabolism , Apoptosis/genetics , I-kappa B Kinase/deficiency , Inflammation/metabolism , Oxidative Stress/genetics , Aged , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/enzymology , Aortic Aneurysm, Abdominal/physiopathology , Apolipoproteins E/deficiency , Apoptosis/drug effects , Elastin/metabolism , Female , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , Macrophages/metabolism , Male , Matrix Metalloproteinase 1/metabolism , Mice , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Oxidative Stress/drug effects , Phosphorylation , Reactive Oxygen Species/metabolism
8.
J Colloid Interface Sci ; 554: 269-277, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31301527

ABSTRACT

Inspite of their impressive high theoretical capacity as Lithium-ion batteries (LIBs) anodes, spinel transition-metal oxides (TMOs) suffer serious volume expansion, aggregation and the pulverization of crystal structures during lithiation/delithiation, and this process severely restrict their industrial application. Multi-dimensional morphological engineering of spinel TMO nanostructures is an effective way to solve this issue. In this work, using facile hydrothermal synthetic methods, spinel CuCo2O4 nanowires arrays are synthesized and supported on g-C3N4 nanosheets, thus forming a unique sandwich-like interconnected three-dimensional mesoporous structure containing high amount of void spaces. Addition of g-C3N4 nanosheets to CuCo2O4 nanowire arrays may shorten the Li+ diffusion distance and electron transfer pathway, and may also provide more active sites for Li+ diffusion into electrolyte and buffer for the volume expansion and aggregation of CuCo2O4. As a LIB anode material, CuCo2O4@g-C3N4 shows initial lithiation capacity of 840.6 mAh g-1, and capacity retention of 641.2 mAh g-1 after 60 cycles at the current density of 0.1 A g-1 and 499.2 mAh g-1 after 40 cycles at high current of 1 A g-1, which is significantly better than value of pure CuCo2O4 nanowires. This work affords a new way to tackle the problem of volume expansion of high capacity spinel TMO anode materials using g-C3N4 nanosheets as buffering agent.

9.
Basic Res Cardiol ; 110(6): 56, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26463597

ABSTRACT

Caspase activation and recruitment domain 3 (CARD3) is a caspase recruitment domain (CARD)-containing serine/threonine kinase and plays a pivotal role in apoptosis, immunity, tissue development and proliferation. To date, the causal relationship between CARD3 and myocardial infarction (MI) remains largely unexplored. This study aimed to identify the functional significance of CARD3 in the regulation of cardiac remodelling after MI and the underlying mechanisms of its effects. The levels of CARD3 expression were up-regulated in failing human and mouse post-infarction hearts. In addition, CARD3-knockout (KO) mice and transgenic mice overexpressing CARD3 in the heart were then generated and subjected to MI. Compared with wild-type (WT) control mice, CARD3-KO mice developed smaller infarct sizes, improved survival rates, and preserved left ventricle (LV) function after MI. Significantly, CARD3-KO hearts had less cardiomyocyte apoptosis and inflammatory cell infiltration in the infarct border zone. Attenuated LV remodelling was also observed in the KO hearts following MI, with reduced cardiac hypertrophy and fibrosis. Conversely, CARD3 overexpression resulted in the opposite MI-induced phenotype. Similar results were observed in ex vivo-cultured neonatal rat cardiomyocytes exposed to hypoxia. Mechanistically, we discovered that the CARD3-mediated detrimental effects of MI were associated with the activation of the NF-κB and p38 signalling cascades. Taken together, these data demonstrate that CARD3 serves as a novel positive modulator of ventricular remodelling after MI via the regulation of the NF-κB and p38 signalling. Thus, CARD3 may be a promising therapeutic target for the treatment of heart failure after MI.


Subject(s)
Myocardial Infarction/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ventricular Remodeling , Animals , Apoptosis , Cells, Cultured , Disease Models, Animal , Humans , Inflammation/metabolism , MAP Kinase Signaling System , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/mortality , Myocardial Infarction/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Up-Regulation
10.
Asian Pac J Cancer Prev ; 13(7): 3483-8, 2012.
Article in English | MEDLINE | ID: mdl-22994782

ABSTRACT

OBJECTIVE: Several studies have demonstrated associations between the TERT rs2736098 single nucleotide polymorphisms (SNPs) and susceptibility to cancer development. However, there are conflicting results. A systematic meta-analysis was therefore performed to establish the cancer risk associated with the polymorphism. METHODS: In this meta-analysis, a total of 6 case-control studies, including 5,567 cases and 6,191 controls, were included. Crude odds ratios with 95% confidence intervals were used to assess the strength of associations in several genetic models. RESULTS: Our results showed no association reaching the level of statistical significance for overall risk. Interestingly, in the stratified analyses (subdivided by ethnicity), significantly increased risks were found in the Asian subgroup which indicates the TERT rs2736098 polymorphism may have controversial involvement in cancer susceptibility. CONCLUSIONS: Overall, this meta-analysis indicates that the TERT rs2736098 polymorphism may have little involvement in cancer susceptibility.


Subject(s)
Neoplasms/genetics , Telomerase/genetics , Asian People , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Odds Ratio , Polymorphism, Single Nucleotide , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...